\(\int \frac {a B+b B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx\) [386]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 36, antiderivative size = 17 \[ \int \frac {a B+b B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx=\frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d} \]

[Out]

2*B*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 17, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {21, 2720} \[ \int \frac {a B+b B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx=\frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d} \]

[In]

Int[(a*B + b*B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])),x]

[Out]

(2*B*EllipticF[(c + d*x)/2, 2])/d

Rule 21

Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Dist[(b/d)^m, Int[u*(c + d*v)^(m +
 n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c +
 d*x, a + b*x])

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rubi steps \begin{align*} \text {integral}& = B \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx \\ & = \frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.01 (sec) , antiderivative size = 17, normalized size of antiderivative = 1.00 \[ \int \frac {a B+b B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx=\frac {2 B \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d} \]

[In]

Integrate[(a*B + b*B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])),x]

[Out]

(2*B*EllipticF[(c + d*x)/2, 2])/d

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.49 (sec) , antiderivative size = 19, normalized size of antiderivative = 1.12

method result size
default \(\frac {2 B \,\operatorname {am}^{-1}\left (\frac {d x}{2}+\frac {c}{2}| \sqrt {2}\right )}{d}\) \(19\)

[In]

int((B*a+b*B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+cos(d*x+c)*b),x,method=_RETURNVERBOSE)

[Out]

2*B/d*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 53, normalized size of antiderivative = 3.12 \[ \int \frac {a B+b B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx=\frac {-i \, \sqrt {2} B {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + i \, \sqrt {2} B {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )}{d} \]

[In]

integrate((a*B+b*B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x, algorithm="fricas")

[Out]

(-I*sqrt(2)*B*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + I*sqrt(2)*B*weierstrassPInverse(-4,
0, cos(d*x + c) - I*sin(d*x + c)))/d

Sympy [F(-1)]

Timed out. \[ \int \frac {a B+b B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx=\text {Timed out} \]

[In]

integrate((a*B+b*B*cos(d*x+c))/cos(d*x+c)**(1/2)/(a+b*cos(d*x+c)),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {a B+b B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx=\int { \frac {B b \cos \left (d x + c\right ) + B a}{{\left (b \cos \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((a*B+b*B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate((B*b*cos(d*x + c) + B*a)/((b*cos(d*x + c) + a)*sqrt(cos(d*x + c))), x)

Giac [F]

\[ \int \frac {a B+b B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx=\int { \frac {B b \cos \left (d x + c\right ) + B a}{{\left (b \cos \left (d x + c\right ) + a\right )} \sqrt {\cos \left (d x + c\right )}} \,d x } \]

[In]

integrate((a*B+b*B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*b*cos(d*x + c) + B*a)/((b*cos(d*x + c) + a)*sqrt(cos(d*x + c))), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {a B+b B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))} \, dx=\int \frac {B\,a+B\,b\,\cos \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,\left (a+b\,\cos \left (c+d\,x\right )\right )} \,d x \]

[In]

int((B*a + B*b*cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + b*cos(c + d*x))),x)

[Out]

int((B*a + B*b*cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + b*cos(c + d*x))), x)